Hauf Research Group

Capelluto Research Group (2018)

We investigate how cells robustly execute cell division, a process that is highly dynamic and requires intricate regulation. The group combines quantitative perturbations, live cell imaging, and computational modeling to understand the underlying regulation.

Loading player for https://youtu.be/7Hl_Dr98ZBQ...

The separation of the chromosomes in anaphase is one of the most dramatic events of the cell cycle. It is irreversible and therefore needs to be highly accurate and tightly coordinated with mitotic exit. We combine perturbation experiments, live cell imaging, and computational modeling to understand how this high degree of coordination is achieved.

Related Publication

Slow checkpoint activation kinetics as a safety device in anaphase. Curr Biol, 2014.

Lipid-binding Events in the Wnt Signaling Pathway

When cells divide, they need to pass on copies of the genetic information to both daughter cells. This step is controlled by a signaling pathway called the spindle assembly checkpoint. If the checkpoint fails, cells can become aneuploid, i.e., have the wrong number of chromosomes, which is a condition associated with cancer. We study how the checkpoint signaling network is constructed and which features allow it to work reliably.

Related Publications

Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol, 2013.

Mad1 contribution to spindle assembly checkpoint signalling goes beyond presenting Mad2 at kinetochores. EMBO Rep, 2014.

Modulators of Platelet Aggregation

Our aim is to understand basic conserved principles of cellular regulation and to be able to quantitatively explain cellular phenomena. In most of our work, we therefore combine experiments with computational modeling. This allows us to explore types of regulation that are too difficult to understand intuitively. We work with fission yeast, a simple eukaryote, which is an excellent model for eukaryotic cells in general, including human cells.

Lab Members

Name
Title

Baybay, Erod


Boluarte, Tatiana

Visiting Scholar

Esposito, Eric

Visiting Student

Krishna, Varun Gopala

Visiting Scholar

Morton, Claire

Student Research Assistant

Perrin, Kaysha

Visitor

Pribadi, Joshua

Visiting Student

Robey, Alex

Visiting Student

Rogers, Jessie

Visiting Student

Vijayakumari, Drisya

Visiting Scholar

Weidemann, Douglas

Visiting Scholar

Williams, Wendi

Visiting Student

Woodhouse, Mitchell

Visiting Student

2017

Carpy A, Koch A, Bicho CC, et al. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast. Cold Spring Harb Protoc. 2017;2017(6):pdb prot091686. https://www.ncbi.nlm.nih.gov/pubmed/28572185

Ciliberto A, Hauf S. Micromanaging checkpoint proteins. Elife. 2017;6. https://www.ncbi.nlm.nih.gov/pubmed/28206949

Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol. 2017;27(1):42–54. https://www.ncbi.nlm.nih.gov/pubmed/27567180

Koch A, Bicho CC, Borek WE, et al. Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains. Cold Spring Harb Protoc. 2017;2017(6):pdb prot091678. https://www.ncbi.nlm.nih.gov/pubmed/28572184

Macek B, Carpy A, Koch A, et al. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast. Cold Spring Harb Protoc. 2017;2017(6):pdb top079814. https://www.ncbi.nlm.nih.gov/pubmed/28572211

Sewart K, Hauf S. Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Curr Biol. 2017;27(8):1213–1220. https://www.ncbi.nlm.nih.gov/pubmed/28366743

2016

Geissen EM, Hasenauer J, Heinrich S, Hauf S, Theis FJ, Radde N. MEMO – Multi-experiment mixture model analysis of censored data. Bioinformatics. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27153627

2015

Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Mol Cell. 2015;60(3):446–459. http://www.ncbi.nlm.nih.gov/pubmed/26527280

2014

Carpy A, Krug K, Graf S, et al. Absolute proteome and phosphoproteome dynamics during the cell cycle of fission yeast. Mol Cell Proteomics. 2014;13(8):1925–36. http://www.ncbi.nlm.nih.gov/pubmed/24763107

Heinrich S, Sewart K, Windecker H, et al. Mad1 contribution to spindle assembly checkpoint signalling goes beyond presenting Mad2 at kinetochores. EMBO Rep. 2014;15:291–298. http://www.ncbi.nlm.nih.gov/pubmed/24477934

Kamenz J, Hauf S. Slow checkpoint activation kinetics as a safety device in anaphase. Curr Biol. 2014;24:646–651. http://www.ncbi.nlm.nih.gov/pubmed/24583014

2013

Hauf S. The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans. 2013;41:1755–1760. http://www.ncbi.nlm.nih.gov/pubmed/24256287

Heinrich S, Geissen EM, Kamenz J, et al. Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol. 2013;15:1328–1339. http://www.ncbi.nlm.nih.gov/pubmed/24161933

2012

Heinrich S, Windecker H, Hustedt N, Hauf S. Mph1 kinetochore localization is crucial and upstream in the hierarchy of spindle assembly checkpoint protein recruitment to kinetochores. J Cell Sci. 2012;125:4720–4727. http://www.ncbi.nlm.nih.gov/pubmed/22825872

Koch A, Rode HB, Richters A, Rauh D, Hauf S. A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase. ACS Chem Biol. 2012;7:723–731. http://www.ncbi.nlm.nih.gov/pubmed/22264160

2011

Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic substrates of the kinase aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast. Sci Signal. 2011;4:rs6. http://www.ncbi.nlm.nih.gov/pubmed/21712547

Sakuno T, Tanaka K, Hauf S, Watanabe Y. Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I. Dev Cell. 2011;21:534–545. http://www.ncbi.nlm.nih.gov/pubmed/21920317

2010

Koch A, Hauf S. Strategies for the identification of kinase substrates using analog-sensitive kinases. Eur J Cell Biol. 2010;89:184–193. http://www.ncbi.nlm.nih.gov/pubmed/20061049

2009

Windecker H, Langegger M, Heinrich S, Hauf S. Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep. 2009;10:1022–1028. http://www.ncbi.nlm.nih.gov/pubmed/19680287

2008

Hauf S. Mps1 checks up on chromosome attachment. Cell. 2008;132:181–182. http://www.ncbi.nlm.nih.gov/pubmed/18243093

2007

Hauf S, Biswas A, Langegger M, Kawashima SA, Tsukahara T, Watanabe Y. Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. Embo J. 2007;26:4475–4486. http://www.ncbi.nlm.nih.gov/pubmed/17932486

Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 2007;21:420–435. http://www.ncbi.nlm.nih.gov/pubmed/17322402

2005

Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 2005;3:e69. http://www.ncbi.nlm.nih.gov/pubmed/15737063

Kitajima TS, Hauf S, Ohsugi M, Yamamoto T, Watanabe Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol. 2005;15:353–359. http://www.ncbi.nlm.nih.gov/pubmed/15723797

2004

Gimenez-Abian JF, Sumara I, Hirota T, et al. Regulation of sister chromatid cohesion between chromosome arms. Curr Biol. 2004;14:1187–1193. http://www.ncbi.nlm.nih.gov/pubmed/15242616

Hauf S, Watanabe Y. Kinetochore orientation in mitosis and meiosis. Cell. 2004;119:317–327. http://www.ncbi.nlm.nih.gov/pubmed/15507205

2003

Hauf S. Fine tuning of kinetochore function by phosphorylation. Cell Cycle. 2003;2:228–229. http://www.ncbi.nlm.nih.gov/pubmed/12734430

Hauf S, Cole RW, LaTerra S, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol. 2003;161:281–294. http://www.ncbi.nlm.nih.gov/pubmed/12707311

2001

Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320–1323. http://www.ncbi.nlm.nih.gov/pubmed/11509732

2000

Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000;103:399–410. http://www.ncbi.nlm.nih.gov/pubmed/11081627